ycf1, the most promising plastid DNA barcode of land plants

نویسندگان

  • Wenpan Dong
  • Chao Xu
  • Changhao Li
  • Jiahui Sun
  • Yunjuan Zuo
  • Shuo Shi
  • Tao Cheng
  • Junjie Guo
  • Shiliang Zhou
چکیده

A DNA barcode is a DNA fragment used to identify species. For land plants, DNA fragments of plastid genome could be the primary consideration. Unfortunately, most of the plastid candidate barcodes lack species-level resolution. The identification of DNA barcodes of high resolution at species level is critical to the success of DNA barcoding in plants. We searched the available plastid genomes for the most variable regions and tested the best candidates using both a large number of tree species and seven well-sampled plant groups. Two regions of the plastid gene ycf1, ycf1a and ycf1b, were the most variable loci that were better than existing plastid candidate barcodes and can serve as a barcode of land plants. Primers were designed for the amplification of these regions, and the PCR success of these primers ranged from 82.80% to 98.17%. Of 420 tree species, 357 species could be distinguished using ycf1b, which was slightly better than the combination of matK and rbcL. For the well-sampled representative plant groups, ycf1b generally performed better than any of the matK, rbcL and trnH-psbA. We concluded that ycf1a or ycf1b is the most variable plastid genome region and can serve as a core barcode of land plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Carboxy Terminus of YCF1 Contains a Motif Conserved throughout >500 Myr of Streptophyte Evolution

Plastids evolved from cyanobacteria by endosymbiosis. During the course of evolution, the coding capacity of plastid genomes shrinks due to gene loss or transfer to the nucleus. In the green lineage, however, there were apparent gene gains including that of ycf1. Although its function is still debated, YCF1 has proven to be a useful marker for plastid evolution. YCF1 sequence and predicted stru...

متن کامل

A DNA barcode for land plants.

DNA barcoding involves sequencing a standard region of DNA as a tool for species identification. However, there has been no agreement on which region(s) should be used for barcoding land plants. To provide a community recommendation on a standard plant barcode, we have compared the performance of 7 leading candidate plastid DNA regions (atpF-atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 g...

متن کامل

Universal Plant DNA Barcode Loci May Not Work in Complex Groups: A Case Study with Indian Berberis Species

BACKGROUND The concept of DNA barcoding for species identification has gained considerable momentum in animals because of fairly successful species identification using cytochrome oxidase I (COI). In plants, matK and rbcL have been proposed as standard barcodes. However, barcoding in complex genera is a challenging task. METHODOLOGY AND PRINCIPAL FINDINGS We investigated the species discrimin...

متن کامل

Land plants and DNA barcodes: short-term and long-term goals.

Land plants have had the reputation of being problematic for DNA barcoding for two general reasons: (i) the standard DNA regions used in algae, animals and fungi have exceedingly low levels of variability and (ii) the typically used land plant plastid phylogenetic markers (e.g. rbcL, trnL-F, etc.) appear to have too little variation. However, no one has assessed how well current phylogenetic re...

متن کامل

YCF1: A Green TIC?

A pivotal step in the transformation of an endosymbiotic cyanobacterium to a plastid some 1.5 billion years ago was the evolution of a protein import apparatus, the TOC/TIC machinery, in the common ancestor of Archaeplastida. Recently, a putative new TIC member was identified in Arabidopsis thaliana: TIC214. This finding is remarkable for a number of reasons: (1) TIC214 is encoded by ycf1, so i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015